

Albert Michelson's Harmonic Analyzer

A Visual Tour of a Nineteenth Century Machine that Performs Fourier Analysis

Bill Hammack, Steve Kranz \& Bruce Carpenter

Albert Michelson's Harmonic Analyzer

This PDF is free for you to view and share for non-commercial purposes.
Be sure to check out the video series on the EngineerGuy channel on YouTube.
More information about the videos, posters, and this book-including how to buy a printed copy-can be found at EngineerGuy.com.

Albert Michelson's
 Harmonic Analyzer

A Visual Tour of a Nineteenth Century

Machine that Performs Fourier Analysis

Articulate Noise Books
Articulate Noise Books
© 2014 Bill Hammack, Steve Kranz, \& Bruce Carpenter All rights reserved. Published 2014

Albert Michelson's Harmonic Analyzer:
A Visual Tour of a Nineteenth Century Machine that Performs Fourier Analysis
Bill Hammack, Steve Kranz, Bruce Carpenter
ISBN-İ: 978-0-9839661-6-6 (hardcover)
ISBN-I:
r. Mathematical instruments-Calculators. 2. Michelson, Albert A. (Albert Abraham), 8852-193r
3. Mathematical analysis-Fourier analysis-Fourier Series

Photography and design by Steve Kranz

To Michelson:
What manner of man was so wise As to make a machine Synthesize? With springs and levers it combines Weighted sines or cosines-
Preface
Introduction
Visual Table of Contents
Fourier Synthesis
Fourier Analysis
The Harmonic Analyzer
Crank
Cone Gear Set
Cylinder Gear Set
Rocker Arms
Amplitude Bars
Measuring Stick
Springs and Levers
Summing Lever
Counter Spring
Magnifying Lever
Magnifying Wheel
Platen
Translational Gearing
Pen Mechanism
Pinion Gear
Provenance
Output from the Machine
Michelson's 1898 Paper
Math Overview
Eight Views of the Machine
Notes on the Design

Preface

$I_{\text {ill }}^{\text {n Octoberinate } 2012}$ the hidden three of us set out to create a video series to Iilluminate the hidden importance of Fourier methods in our modern technological world. We had intended to stay firmly rooted in the twenty-first century; instead we discovered a machine that took us over
one hundred years into the past.
We learned, while researching Fourier methods, of nineteenth century machines that performed Fourier synthesis and analysis. We thought such a machine would be an ideal subject for a video series to present ourier methods in a highly visual way. This line of thought awoke in vo of us-Bill and Bruce-dim memories of such a machine located mewhere in Altgeld Hall, We rushed to that
planning our video series, and found, sitting a glass case in the second floor hallway, a wonderful contraption of gears, spring and levers-a Fourier analyzer. The Department of Mathematics graciously granted our request to free the analyzer from its case so that we could film it. We
moved it to our machine shop where Mike Harland and Tom Wilson moved it to our machine shop, where Mike Harland and Tom Wilson the pen. We thank the members of our Advance Reader Program for their very useful comments and corrections.
We brought the machine into our studio, and as we investigated its operation, its charms overwhelmed us. It became the star of the video
series, and the subject of this book. While the book tands alone we series, and the subject of this book. While the book stands alone, we courage readers to watch the videos exploring its operation at www.engineerguy.com $/$ fourier.

Bill Hammack, Steve Kranz \& Bruce Carpenter

Introduction

T his book celebrates a harmonic analyzer designed in the $1 \begin{aligned} & \text { HIs Book Celebrates a harmone ninetenth century by the physicist Albert Michelson. }\end{aligned}$ A harmonic analyzer can carry out two related tasks: it can add
together weighted sines or cosines to produce a function, and it together weighted sines or cosines to produce a function, and it can perform the inverse operation of decomposing a given function into its constituent sinusoids

The addition of sinusoids is called Fourier syntbesis. While beautiful patterns that look nothing like sinusoids: it produces beats, peaks, flat sections, or other complicated patterns.

These patterns were produced by the harmonic analyzer described in thi book. The pattern in the upper left is beats, upper right a sinc, and lower mach hine's amplitudes bars randomly.

Astonishingly, the machine can also reveal the recipe for making these rich patterns. Given any even or odd periodic func ion, the analyzer can calculate the proper weighting to use when approximating that function by a series of cosines or sines. This nathematical operation is called Fourier analysis. A generalized form of Fourier analysis is central in solving many scientific and engineering problems. A few examples of their diverse applica-
tions include: removing noise from images sent by NASA space probes, compressing sound recordings to make MP3s, and determining the arrangement of atoms in a crystal.
Today, mention of Michelson brings to mind the Nobe Prize winning Michelson-Morley experiment, that famous mea surement of the speed of light that ruled out a stationary light
bearing "luminiferous aether." Yet he studied many different physical phenomena, among them the light emitted by flames. He noted that flame made by burning even a pure element was composed of light of different frequencies. Michelson wanted to know the exact values of these frequencies. He measured the emission from these elements us ing an interferometer, the same type of device he used in the Michelinto two paths and then recombined. By varying the length of one of the beams Michelson could cause the recombined beams to interfere constructively or destructively. The amount of interference depended on the frequencies of light in the beam. To extract the frequencies he used Fourier analysis. At first Michelson performed by hand the Fouier analysis needed to determine those frequencies, but soon found it laborious. "Every one who has had occasion," he once wrote,

to calculate or to construct graphically the resultant of a large number of simple harmonic motions [sinusoids] has felt the need of some simple and fiirly accurate machine felt the need of some simple and fairly accurate machine which would save the considerable time and labor involved

 in such computations."This need lead him to the invention and construction of the harmonic yzer described in this book.
He began by studying the scientific literature on harmonic anazers. He found only one "practical instrument": an analyzer develmotions needed to simulate tides Kelvin strung ropes around pulleys. hese ropes were the mactis's great flaw, as Michelson, a superb experimentalist, immediately saw:
"The range of the machine is however limited to a small number of elements on account of the stretch of the cord and its imperfect flexibility, so that with a considerable inrrase in the number of elements the accumulated errors due
othese causes would soon neutralize the advantages of the oo these causes would som newaizer the advantages of the

To eliminate the problems caused by the stretching ropes Michelson most promising," he wrote, "were addition of fluid pressures, elastic and other forces, and electrical currents. Of these the simplest in practice is doubtless the addition of the forces of spiral springs." Using springs he first built a a 2o-element analyzer, one that calculates with 20 sinusoids with radian frequencies starting at I , the fundamental, followed by the harmonics 2 , 3 , and so on up to
20. He found the "results obtained were so encouraging that it was 20. He found the "results obtained were so encouraging that it was
decided to apply to the Bache Fund for assistance in building the decided to apply to the Bache Fund for assistance in building the
present machine of eighty elements." His application succeeded: he present machine of eighty elements." His application succeeded: he
got $\$ 400.00$. With those funds he built a harmonic analyzer with 80 got $\$ 400.00$. When those funds he built a harmonic analyzer with 80
elements, which he described in detail in an article published in The American Journal of Science. (This paper is reproduced on pg. 90.) In that paper Michelson mentions his plans to build an anahaps because of technical limitations in materials and machining, or haps because of technical limitations in materials and machining, or
perhaps because of other demands on Michelson's time. And while this machine was never built, with today's computational power we essentially have Michelson's harmonic analyzer built into many devices: it is in every mobile phone, every telecommunications system, and in every computer program that manipulates an image.

Dimensions

In 1898 Michelson and his coauthor Stratton published a paper in The American Journal of Science that detailed an 80 -element harThe American Journal of Science that detailed an 80 -element har-
monic analyzer closely related to the 20 -element analyzer featured in this book. A facsimile of the complete paper is included in this
book (po. 00)

Fourier Synthesis

$$
f(x)=\sum_{n=1}^{20} a_{n} \cos (n x)
$$

$$
f(x)=\sum_{n=1}^{20} a_{n} \cos (n x)
$$

This macch
synthesis:

$$
f(x)=\sum_{n=1}^{20} a_{n} \cos (n x)
$$

We'll take a look at this equation and then run through it piece by piece to better understand the meaning of each part. On the facing page, we show how the components of the equation are implemented by the analyzer.

$$
f(x)=\sum_{n=1}^{20} a_{n} \cos (n x)
$$

A cosine is a wave. It it periodic, which means it repeats after a
given period. It always has a value between - -1 and 1. $\qquad \begin{aligned} & \text { The variable } x \text { is the position } \\ & \text { of the cong the herine. } \\ & \qquad f(x)=\sum_{n=1}^{20} a_{n} \cos (n x)\end{aligned}$
The value n is an integer that ranges from 1 to 20. It deter-
mines the frequency-i.e., the number of oscillations-for each cosine in the equation

This symbol, a_{2} (read: "A sub N ") is called the coefficient. The values of
$a_{n}\left(a_{1}, a_{2}, a_{3}, \ldots, a_{20}\right.$ determine the function that will be synthesized.

$$
f(x)=\sum_{n=1}^{20} a_{n} \cos (n x)
$$

$f(x)$ is the result of the summatio

If the cosines are stacked one on top of the other, this adds
them together-this is the summation. A line drawn across th

x

 osciliations at the tips of the rocker arms. Each rocker arm produces its own oscillations at the
sinusoidal wave.
$\cos (n x)$
interpretation

The variable x is proportional to the rotation of the crank.

The variable sizes of gears in the cone set drive the gears in the cylinder set at different frequencies. The nth gear on the cylinder gear set spins at a rate n times as fast as the first gear. There are twenty gears and so there are twenty frequencies produced.

The positions of these bars along the rocker arms set the values of the co efficients a_{n} that weight the sinusoids-there is one bar for each of the 20 frequencies.

Fourier Analysis

$$
a_{n} \approx \sum_{k=1}^{20} f_{k} \cos \left(k n \frac{\pi}{20}\right)
$$

The Harmonic Analyzer

Crank

$T_{\text {he crank provides the sole motive power for }}^{\text {all the operations of the machine. As the }}$ arns the crank, the machine comes alive: the gears silently spin, the rocker arms seesaw, the springs elongate and contract, the pen moves up and down, and the paper travels sideways. The handle of the crank, a smooth piece of wood stained black, has a shape well-suited for a firm grip, and it rotates on a pivot so that the operator's hand of the springs, amplitude bars, and rocker arms, the force required to turn the crank can vary markedly as it rotates. A tapered pin, which affixes the crank to a shaft, can be removed so the gear on the crankshaft can be changed (pg. 56). Notice the small fiducial indentations that aid alignment when replacing the crank. The small eyelet on long lost, that tethered the pin to the crank.

$7 \begin{aligned} & \text { he crank rotates a conically-shaped set of gears, } \\ & \text { reduced in 4: ratio, so that one turn of the crank }\end{aligned}$ turns the cone gear set a quarter of a revolution. This cone gear set, not commonly seen in other machines, changes the continuous motion of the crank into the twenty different frequencies needed by the machine. fixed to the same shaft so that they rotate together. Each gear on the cone gear set engages a corresponding gear
on the cylinder set at an oblique angle; this lack of full engagement has left distinct wear patterns on the teeth of all the gears, with the smallest gears of the cone exhibiting the most wear. The smallest spur gear has six
teeth, the next larger has i2 teeth, with each succeeding teeth, the next larger has $\mathrm{I2}$ teeth, with each succeeding
gear having 6 more teeth than the gear before, up to the twentieth gear with 120 teeth. The four smallest gears at
the tip of the cone are slightly more yellow in appearance and seem to be made of a different, perhaps harder metal. By loosening a knob, the cone gear set can be pivoted out of engagement so that the cylinder set can be aligned
for generating either sines or cosines $(\operatorname{pg} .66)$ for generating either sines or cosines (pg. 66).

Cylinder Gear Set

$7 \begin{aligned} & \text { He 20 Gears on the cone gear set engage a "cylin- } \\ & \text { drical" set of gears. The gears on the cone set have }\end{aligned}$ graduated sizes, but all spin at the same angular velocity.
In contrast, the gears on the cylinder set are of equal size In contrast, the gears on the cylinder set are of equal size,
but each gear spins independently with an angular velocity proportional to the size of the corresponding gear on the cone set. The cylinder gear set is actually a sandwich,
alternating shiny brass gears with black, rough-finished (see cam outline on pg. 25) attached to the cylinder gear
. to its right. As a particular gear on the cylinder turns, its cam drives the corresponding connecting rod in a reciprocating up-and-down motion, producing a near-
sinusoidal oscillation on a rocker arm attached to the other end of the rod. This combination of mechanical elements procuces the twenty different frequencies used
in the analyzer. Another feature of the cylinder gear set, one easily overlooked on cursory inspection, is that each gear contains a notch, approximately 3 mm in depth, that is used to align the gears on the cylinder as well as to set (see pg. 66 for a description of the alignment process).

 Ren

 8
0
0

Rocker Arms

$\mathbf{A}_{\text {transfer the oscillatory motions of the cams asting roci- }}^{\text {set }}$ transfer the oscillatory motions of the cams associarms are shaped concave upwards with a radius of curvature the same as the length of the amplitude bars that ride on them. As the crank is turned, the motion of the ends of the rockers is fascinating to watch (see the pic-
tures on the left of the following spread): each individual ocker arm seesaws up-and-down in a continuous near responding cylinder gear. And at the same time, when viewed from the side of the machine, the ends of the rocker arms show a mesmerizing collective motion: the ends are discretized samples of a sinusoid with frequency determined by the total number of crank turns.

Amplitude Bars

$T_{\text {wenty long vertical rods, about } 80 \mathrm{~cm} \text { in }}^{\text {length }}$ length, run up the spine of the analyzer; their rust. These rods are called amplitude bars, and their long length ameliorates the nonlinearity inherent in transmitting the weighted sinusoidal motion of the rocker arms to the spring-loaded levers at the top of the and The position of a particular bar along its rocker arm the corresponding sinusoid. At the bottom of each amplitude bar there is a notch that lets the bar slide along its rocker arm for positioning. While being positioned, a bar produces a satisfying metallic squeak-virtually the nly sound the machine ever makes, ever dorig opertion. Positive amplitudes are set by positioning the bar on one side of the rocker arm pivot, negative amplitudes
on the opposite side. Positioning a bar at the pivot point of its rocker arm sets that coefficient to zero. Care must be taken by the operator during positioning because the bars can slide completely off the rocker.

To set the amplitude bars on the rocker arms the ma1 chine manufacturer, Wm. Gaertner \& Co., provided a
ruled brass gauge with a stop that slides and locks. The gauge is marked o to ro, but the scale is not inches, nor centimeters,
ruse but just the ro equal divisions of one half of the rocker arm. To use it one first sets the value of the coefficient-"2.0" and " $9 \cdot 3$ " as shown on the pages that follow-lays the stick on the rocker arms, and then slides the amplitude bar, which screeches slightly, out to meet it. Note that the markings are
hand stamped, and that the tick mark for 0.5 is longer than hand stamped, and that the tick mark for 0.5 is longer than
any other. Also, some of the markings are unevenly spacedthe distance between 0.4 and 0.5 is smaller than the distance etween 0.5 and 0.6 -which indicates that the measuring stick was handcrafted. For illustrative settings of the amplitude bars see page 78 .

ω

Springs and Levers

 at the lever's opposite end comes from the pull of one of twenty springs attached to a pivoted summing lever. The motion of these third-class levers mirrors that of the rocker arms, but modulated by the positions of the mplitude bars. If an amplitude bar rests in the middle of a rocker arm (at the pivot point) the lever at top stays
motionless; if the amplitude bar has been slid to one of the edges of the rocker arm the lever's motion reflects the full amplitude of the tip of the rocker arm; and if the amplitude bar is slid fully to the opposite end of the rocker arm, the lever's motion is 180 degrees out-of-phase, so
that when the rocker arm rises, the lever at top drops.

his harmonic analyzer is very tall in relation to
its base in order to accommodate the motions creits base in order to accommodate the motions cre-
ated with every turn of the crank. The results of these motions are quietly summed at the top of the machine by an oddly-shaped summing lever. On the end of the summing lever that connects to the twenty small springs from the top levers, it is wide and flat; the other end is long and narrow and connects to a single larger spring which
provides counterbalance. The springs on both sides hold provides counterbalance. The springs on botf sides hol knife edge in order to reduce friction. The range of motion of the summing lever is very small, on the order of only a few millimeters. The analyzer has mechanisms that bring these motions to human-scale by magnifying and recording them.

Counter Spring
$\mathbf{A}_{\text {end of the spring connects to a machine. One }}^{\text {and }}$ pivoted summing lever, the other end connects to a curved, tapered post. This large-diameter spring counterbalances the accumulated pull on the summing lever of the twenty individual smaller springs. The machine's operator changes the tension on this counter spring by loosening a square-head screw Close examination reveals gouges that mar the finish of the post that were left by the screw during previous height adjustments of the counter spring.

Magnifying Lever
$\mathrm{F}_{\text {ven though the combined force of twenty }}^{\text {vill }}$ small springs tugs at one end of the summing
lever, its resulting motion sweeps out an arc of only a few millimeters. This motion must be magnified to produce useful output. Firmly affixed to the summing lever is a round brass rod that magnifies the sweep of the summing lever up to a factor of four
The motion of this rod, called the magnifying lever The motion of this rod, called the magnifying lever, is communicated to the writing apparatus below by
a long wire attached to a smaller vertical rod. The operator sets the amount of magnification by sliding this vertical rod along the magnifying lever and then tightening a reeded screw to keep it in place The operator can also adjust the vertical placement of the machines output by sliding a fixture up and
down on the vertical rod. A wire is hooked to this fixture and communicates the motion to the magnifying wheel.

 on the inner hub of a magnifying wheel. This mag-
nifying wheel is a pulley comprised of two coaxial wheels that rotate together: a small inner wheel (the hub) and a larger outer wheel. The wheel oscillates as the operator turns the crank; its circular motion mirrors the peaks and valleys of the output. A separate wire is wrapped around the larger wheel and attaches to the pen mechanism. The
diameter of the outer wheel is five times the diameter of diameter of the outer wheel is five times the diameter of tion from the end of the magnifying lever is magnified by a constant factor of five. This wire attaches to the top of the post holding the machine's pen so that the wheel's rocking turns into an up and down motion of the pen. To set up the machine an operator first wraps the outer wire around the hub, holding it in place while looping
another wire around the inner hub. If not done carefully the wheel unwinds causing the wires to fly off the hubs and the pen to drop.

$T_{\text {he heavy brass platen, likely darkened by some }}^{\text {treatment, moves a piece of recording paper hori- }}$ zontally while the pen moves vertically. These motions allow for two-dimensional drawing. A toothed brass rack along the platen's bottom edge engages a set of gears driven by the crank. This set of gears shown in the following pages can be unlatched from the platen's rack
so that the platen can be moved freely when resetting the so that the platen can be moved freely when resetting the the operator replaces the recording paper by sliding it the operator replaces the recording paper by sliding it
under the two brass clips on the left and right sides of the platen.

Translational Gearing
$T_{\text {he analyzer has a set of six translational gears that trans- }}^{\text {fer the motion of the crank to the pensen }}$ fer the motion of the crank to the platen. Because the crank ber of revolutions to generate the 20 different frequencies. Two
ber of the translational gears are used in a fixed gear reduction of the crank speed. Two of the gears form a rack and pinion that converts the rotary gear motion to linear motion of the platen. The final two gears-the ones connected by a chain, one at the front of the platen, the other on the crankshatt-can be removed and replaced speed of the platen as the crank is turned. There is a small latch that allows the operator to disengage the gearing from the platen; this allows the platen to be quickly reset as well as producing slack in the chain for gear replacement. Changing the platen speed changes the horizontal scaling of the output. These two removable gears come in three sizes: small, medium, and large as shown
below. Each can be attached to either the platen drive mechanism (upper gear) or the crankshaft (lower gear), as shown on pages 60 and 6 r. The facing page shows that the small-large gear combination moves the platen the fastest and so yields the greatest horizontal scaling, while the large-small combination moves the platen the slowest and so gives the smallest horizontal scaling

 small

lower gear

Pen Mechanism

$T_{\text {HESE BRASS PIECBS ARE about roo years younger than any other part of the }}$ machine. This analyzer was missing its writing mechanism for recording
the results of its calculations. To rebuild this we reviewed photos and drawings of other Michelson analyzers. In these images, we found several types of writing
the mechanisms-some machines used a long, horizontal lever arm, like a seismo-mechanisms-some machines used a long, horizontal Iever arm, like a seismo-
graph, while others had a pen attached to a long, rigid, vertical rod. Ultimately, graph, built a simple serplacement: a brass frame holds a marker in a v-block, which is attached to a square brass rod, which in turn is attached to the wire from the magnifying wheel. The marker, which moves vertically, draws a curve as the
platen moves horizontally underneath it. There is also a small set screw that platen moves horizontally underneath it. There is also a small set screw that
adjusts the angle of the pen to the paper. This allows the operator to reduce the friction between the marker and paper to produce the smoothest output.

The harmonic analyzer can calculate using ei1 ther cosines or sines. Before using the machine, the gears in the cylindrical train must be aligned to ensure
that the twenty sinusoids it produces will be in phase at the start. To do this the operator first disengages the cone gear set via a pivot at its tip. Each gear on the cylinder set has a reference mark- a single notch about 3 mm in depth. The operator, using their fingers, rotates each gear in the cylindrical train until the notches line
up. After this alignment, a small lever is used to engage up. After this alignment, a small lever is used to engage
the pinion gear with the cylinder gear set. The operator turns the pinion gear, which now moves all the cylinder gears as one, to set the machine to use either sines or cosines. If the notches all point toward the top, the anayzer is set to calculate with cosines; if the notches are 90 degrees from this position, the analyzer calculates with
sines. The pinion gear is then disengaged, and the cone gear set re-engaged with the cylinder gear set. Each of these steps tends to move the cylinder gears slightly out of alignment, so constant correction is required.

Provenance
The harmonic analyzer depicted in this book has ticular machine was built by "Wm Gaertner \& Co." This small plate, 100 mm by 55 mm , helps date the machine. This company started in 1896 and then changed its name in 1923 to "The Gaertner Scientific Corporation." So this machine must have been built between 1896 and 1923. The manufacturer and the date range for its manufacture are the only solid facts we have about its provenance-

Several centimeters from the nameplate, a single 2^{\prime} is stamped in the corner of the baseplate. This machine may have been the second mod manufactured in a particular production run.

35

WM GAERTNER \& CO

CHICAGO, U. S. A.

to go further requires informed speculation. We don't
know who acquired it or even when it arrived at the University of Illinois's Department of Mathematics. The best that we can do is report clues and hints based on the machine's design and then correlate those features with information from reports of other Michelson machines built by William Gaertner \& Company. William Gaertner was a German-born instru-
ent maker who worked on the South Side of Chicago until his death in 1948. Gaertner often built commercial versions of the instruments developed by Michelson, then a Professor at the nearby University of Chicago. Gaertner, for example, manufactured and
sold the first commercial version of Michelson's intersold the first commercial version of Michelson's interferometer, which was so successful that 50 years after
the first one appeared 80% of the interferometers in use in the United States had been built by Gaertner's
company.
Gaertner sold harmonic analyzers designed by Michelson in the early decades of the twentieth century. Two versions of the analyzer appear in the company's 1904 catalog, tucked in at the end after pages
of interferometers and astronomical instruments. The catalog offers both a 20 -element and an 80 -element analyzer, it lists no price for either size, but from other research we know that Gaertner did sell some analyzers. The Columbia University Quarterly of 19or highlights the work of "Professor Hallock on the composi-
tion of sounds," noting that "he will use a Michelson harmonic analyzer just completed for him by Gaertner, of Chicago." In 1904 the Victoria \& Albert Museum reported that "the most valuable acquisition during the year is ... an 8o-element Harmonic Analyzer and Integrator, made by Gaertner, of Chicago, to the
design of Michelson." The University of Wisconsin's design of Michelson." The University of Wisconsin's Biennial Report for their regents mentions "Details of
Disbursements, igo3-04: Wm. Gaertner \& Co., harmonic analyzer $\$_{4} 42.00$." The roog sessional papers monic analyzer $\$ 442.00$. The 1909 sessional papers
of Canada-their legislative record-lists "Gaertner, Wm . \& Co.: 20 element harmonic analyzer s 225 ."

Left an 80-element machine; right a 20-element machine, nearly identical to the analyzer describect in this book. The two pages reproduced above appeared in
Co. catalog of astronomical, physical and physiological instruments.

These photographs show Michelson's 80 -element analyzer on display ca. 1950-1960.
Photos courtesy of

And Ingersoll and Zobel in their rgrs book An Intro
duction to the Mand describes Michelson's 80 -element analyzer and note a number of analyzers of this type have been made by Wm. Gaertner \& Co. of Chicago." After 1913 we could find no reports of the analyzer until 1933 .

At the 1933 World's Fair a 20-element machine was featured in the Great Hall of Science under the
title of "The Magic of Analysis." The machine displayed at the fair differed significantly from the an plyzer described in this book. Frederick Collins, British electrical engineer, noted that it was "greatly improved since [the] 1898 machine", specifically "instead of a cone of gears that was used in the first ma-
chine, a set of sine cams is used to give motion to the chine, a set of sine cams is used to give motion to the
lever arms and tension of the springs." This change in lever arms and tension of the springs. This change in
the gear train is confirmed by the recollection of the curator of Mathematics and Antique Instruments at the Smithsonian Institution; in a 1969 interview she recalled that Gaertner still made the analyzer in 1930 , but noted that "they changed the design from the cone to the cylinder, and they made some modifications."
So our best guess about this machine's origin and ate is that it was one of several 2 o-element machines manufactured by Wm. Gaertner \& Co. between r896 and 1923 with a high probability that it was made between Igor to 1909 -the era when we see the most reports of 20 -element machines. We believe it was purchased for a research project, but, based on the
overall lack of wear of the analyzer's moving parts overall lack of wear of the analyzer's moving parts, it
was likely never heavily used. The machine now sits was likely never heavily used. The machine now sits
proudly in a glass display case in Altgeld Hall, at the proudly in a glass display case in Altgeld Hall
University of Illinois at Urbana-Champaign.

This version of Michelsos's's 20 -element harmonic analyzer appeared at the 1933 World's Fair
principal difference from the machine describe
this book is the raple in this book is the replacement of the

Output from the machine

The next fourteen pages show the machine's output for specific settings of the amplitude bars on the rocker arms. In generating this output the machine was set to use cosines, except for the results on page 89 where sines were used.

Pages
Description
76-77 Cosines for all of the twenty frequencies that the machine can produce.
78-8I The amplitude bars are set on the rocker arms to produce four different types of square waves.
$82-85$ A parin or

86-88
Arbitrary values are set on the rocker arms.
89
A square wave is set on the rocker arms, but here the machine is set to calculate with sine
 Rocker arm This set of amplitudes..
is placed on the rocker arms..

Input

|harmannorif||hermanariol||

 \qquad

AR

AL

Michelson's 1898 paper

A. A. Michelson and S. W. Stratton
 "A New Harmonic Analyzer"

 American Journal of Science 25 (1898): i-13In this paper Michelson and his coauthor Samuel Stratton describe an 8o-element analyzer-a machine with four times as many elements as the analyzer shown in this book. They outline the essential mechanical
clements of the analyzer, show pages of sample output, and take a brief elements of the analyzer, show pages of sample output, and take a brief
look at the mathematical approximations and simplifications underlying look at the mathematical approximations and simplifications underlying
the machine's operation. A close look at the paper will delight the reader. For example, the function shown on the left and right sides of figure ${ }^{3} 3$ is the profile of a human face. And, at the end of the paper, Michelson and Stratton propose two intriguing ideas. First, they propose building a都 that the sinusoidal tions created by the gears could be replaced by other functions.

AMERICAN JOURNAL OF SCIENCE

[FOURTH SERIES.]

Art. I.-A new Harmonic Analyzer; by A. A. Michelson
and S. W. Stratron. (With Plate I.) Every one who has had oceasion to calculate or to construc graphieally the resultant of a larrene number of simple harmonic
 involved in such computations.
The principal difficulty in the realization of such a machin lies in the acconmulation of errors involved in the process of
addition. The only practical instrument which has yet been addition. The only practical instrument which has yet been
devised for effecting this addition is that of Lord Kelvin. In
Ition devised or efectinge this addition is that of Lord Kelvin. In
this instrument a fexille ocrd passes over a number of fixed
and movable pulleys. If one end of the cord is fixed, the and movable pulleys. If one end of the cord is tixed, the
motion of the. other end is equal to twice the sum of the motions of the movable palleys. The range of the machine is
however limited to a small number of elements on account of however ilimited to a amall number of elements on account of
he stretch of the cord and its imperfect tlexibibily, so that
with a considerable increase in the number of ele with a considerable increase in the number of elenenents the
accumulated errors due to these causes would soon neutraliz accunulated errors due to these causes would soon neutralize
the advantages of the incereased number of terms in the series.
In It occurred to one of us some years ago that the quantity to
be operated upon might be varied aluost indefinitely, and that
 tically eliminated. Among the methods which appeared most
romising were addition of flaid pressires, elastic and other

Let $a($ Fig. 1) $=$ lever arm of small springs, s. (but one of which
is shown in the fig.) is shown in the fig.)
$==$ ever arm of large counter.spring, S .
=natural length of small springs. $k=$ lever arm of large count erspring,
$l_{0}=$ =natural length of minall pirings.
=

$\epsilon=$ constratt of smant smpth of larg.
$E=$ constant of large springs.
$p=$ number of small springs.
$p=$ forece duat o one of the sinall springs.
$p=$ force due to the large spring
then
then
whence

$$
\begin{aligned}
& \begin{array}{l}
\text { large spring. } \\
p=\frac{e}{l_{0}}\left(l+x-\frac{a}{b} y\right)
\end{array}
\end{aligned}
$$

Whee
From this it follows that the resultant motion is proportional
to the algebraic sum of the components, at least to the same order of aceurracy as the increment of force of every spring is proportional to the increment of length.
To obtain the greatest amplitude for a given number of ele ments, the ratios $\frac{l}{L}$ and $\frac{a}{b}$ should be as small as possible, but of course a limit is soon reached, when other considerations enter.
Abont a year ago a machine was constructed on this principle with twenty elements and dhe ressltstodotianed** were so
encouraging that it was decided to apply to the Bache Fund eneouraging that it was deeided to apply to the Bache Fund
for assistance in brilding the present machine of eighty elements.
Fig.
1 shows the essential parts of a single element. s is one of eightys small sspenings attacched a side by sy side to the the e ever
C which for greater rigidity has the form of a hollow cylinder C, which for greater rigidity has the form of a hollow cylinder,
pivoted on knife edges at its axis. S is the large conter pivoted on knife edges at its axis. S is the large counter-
spring. The harmonic motion produced by the excentric A, spring. . We harnouic motion produced by the excentric A,
is communited to x by the rod R and lever B, the anplitude
of the motion at x depending on the adjustable distance d. ${ }_{*}^{*}$ Paper read before the National Academy of Science, A pril, 189 .

Michelson and Stratton-New Harmonic Analyzer.
The resultant motion is recorded by a pen connected with u
by a fine wre w. Under the pen a slide moves with a speed proportional to the angular inotion of the moves with a speed
To represent the suncession of terms of a Fourier seriese I.) To represent the suceession of terms of a Fourier series the
excentrics have periods increasing in regular suceession from one to eigithy This is accompsilished by bearinn to eacal exceen-
tric a wheel, the number of whose teeth is in the proper ratio tric a whel, the number of whose teeth is in the proper ratio.
Theses last tare all fastened together on the same axis and form he cone D. (Plate I.)

Turning the cone will produee at the points (x) motions cor-
 mplitudes depend on the distances d. The motion of the ele-
ments may also be changed from sine to cosine by disengaging ments may also be changed from sine to cosine by disengaging
the cone and turning all of the exeentrise thliongh $90^{\text {by }}$ by
means of a long pinion which can be thrown in gear with all means of a long pinion which can be thrown in gear with al
of the excentric wheels at once. The effenieiney and acenrace. of the machine is well illustrated
in the summation of Fourier series shown in the accompany ing figures. Figures. 2 shows the dependence of the accuracy of a particu-
ar function on the number of terms of the series. Figarres 3 , ar function on the number of terms of the series. Figures 3 ,
$4,5,6$ and 7 are illustrations of a number of standard forms,
nd 8,9 and 10 illustrate the of of the ols. and 8,9 and 10 illustratat e the u use on the machine in construct-t,
ng curves representing functions which scarcely admit of ing enrves representing functions which scarcely admit of
other analytical expression. The machine is capable not only of summing up any given
trigonometrical series but can also perform the inverse process

Michelson und Stratton-New Harmonic Analyzer. τ

Tictelson and Stratton-New Harmonic Analyzer.
of finding for any given function the coefficients of the cor
responding Fonrier series. responding Fonrier series.
Thus if
$f(x)=a_{i}+a_{1} \cos x+a_{2} \cos 2 x+$
and
$a_{k}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos k x d x$

On the other hand, if n is the number of an element of thee
machine and a the distance between any two elements, and the

10 Michelson and Stratton-Nevo Uurmonic Analyeer
amplitude d (fig. 1) is proportional to $f(n a)$, the machine gives $\sum_{0}^{2} f(n \alpha) \cos n \theta=\sum f(x) \cos { }^{m}=\theta_{n}$
which is proportional to a_{k} if $k=\frac{m}{\pi} \theta$. Hence to obtain the integral, the lower ends of the vertical rods R (Plate I) are moved along the levers B to distances proportioual to the ordi-
nates of the curve $y=f(n a x)$.
 k which approximates to the value of the integral as the num
ber of elements increases. To obtain the values corresponding ber of elements increases. To obtain the values corresponding
to the coefticients of the Fourier series, the angle $\theta=\pi$, or the corresponding distance on the carve, is divideded intom m equal
parts. The required coefficients are then proportional to the parts. The required coefficients are
ordinates erected at these divisions.
Figure 11 gives the approximate value of $\varphi(x) \cos k x d x$ when $\varphi(x)=$ constant from 0 to a, and is zero for all other values. The exact integral is $\frac{\sin k a}{k}$. The acenracy of the approximation is shown by the following table, which gives
the observed and the calculated values of the first twenty coefthe observed and
ficients for $a=4.0$. $\int_{0}^{n} \cos k x d x$

Sections with the ordinates midway between the heavier
rdinates, give the coefficients of the sine and cosine serie respectively. The sunns of the first twenty terms are repre sented by the curves D and E, and finally y the sum of these two curves prodnces the curve F, which agrees sufficiently well
with the original to be easily recognizable.
It appears, therefore, that the nachine is capable of effect ing the integration $\int \varphi(x) \cos k x d x$ with an accuracy comparable with that of other integrating machines; and while it is
scarcely hoped that it will be ised for this purpose where great ceuracy is required, it certainly sives an enormous anonnt of accurracy is required, it certainy sives an enormous anonnt of
labor in cases whlere an error of one or two per cent is unim The experience gained in the construction of the present nachine shows that it would be quite feasible to increase the machine shows that it would be quite fasible to increase the
number of elements to oeveral hundred or even to a thousand
with a proportional increase in the accurracy of the integra tions.
Finally it is well to note that the priuciple of summatio
here employed is so general that it may be nsed for series o Finally it is well to note that the principle of summation
here employed is so. general that tit may be nsed for series of
any function by giving to the points (p) the motions corre nore employed
ny function by goving to the points (p) the motions corre sonding to the required fnnetions, instead of the simple hal
monic motion furnished by the excentrics. A simple metho of onic motion furrished by the excentrics. A simple method
of effecting this change would be to cut metal templates of the
regnired forms, monnting them reqnired forms, monnting them on a common axis. In fact
the harmonic motion of the original machine was thus pro
duced. duced.
Rygerson Physical Laboratory, University of Chicugo.

Math Overview: Synthesis

$\Gamma_{\text {his harmonic analyzer implements a simplified version }}^{\text {and }}$ of a mathematical technique pioneered in the early 1800 by Joseph Fourier. Many periodic functions can be represented by a
series of cosines and sines:

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{2 \pi n x}{T}\right)+b_{n} \sin \left(\frac{2 \pi n x}{T}\right)\right]
$$

where a_{0}, a_{n} and b_{n} are constants, and T is the period.
The analyzer can be set up to synthesize either an even peridic or an oda periodic function. A function is odd if when rotated rro about the origin, the rotated function is identical te the
rotated

$$
f(-x)=-f(x) \quad \sim \sim \text { h~~ }
$$

A function is even if when mirrored about the vertical axis, the mirrored function is identical to the unmirrored function. In mathematical terms this occurs when:

$$
{ }_{f(-x)=f(x)}^{\sim} \sim \omega
$$

An odd periodic function can be approximated using only sines:

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{2 \pi n x}{T}\right)
$$

while an even periodic function can be approximated using only cosines:

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{2 \pi n x}{T}\right)
$$

When performing synthesis the Michelson analyzer uses several simplifications and approximations. To explain, we'll use only the he sine series.
The leading term of the series $\left(a_{0} / 2\right)$ is set using a knob that
slides the writing mechanism up or down relative to the plate separately from the the sum of cosines (pg. 48); this action mimic or down the vertical axis. This allows us to simplify the formula for or down the ver
synthesis to:

$$
f(x)=\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{2 \pi n x}{T}\right)
$$

The next simplification involves rescaling the horizontal axis. This axis, on which x is measured, does not have a fixed unit. It cas be changed by the translational gearing that drives the platen,
we can assume that the period T is 2π. The formula now becomes

$$
f(x)=\sum_{n=1}^{\infty} a_{n} \cos (n x)
$$

And, finally, an approximation is introduced: the machine can sum only twenty cosines becauses its gear train has only twent
gears. This restricts the sum to run from I to 20 . Using these sim gears. This restricts the sum to run from ict plifications and approximations, the function synthesized by the analyzer becomes

$$
f(x)=\sum_{n=1}^{20} a_{n} \cos (n x)
$$

Using sines and cosines to approximate a function touches on many fundamental issues of mathematics and so its history is ric and fascinating. An excellent and accessible introduction to Fou-
rier analysis and its history can be found in P.J. Davis, R. Hers and E.A. Marchisotto, The Matbematical Experience (New York: Springer, 2012).

Math Overview: Analysis

$\mathrm{F}^{\text {or a periodic function } f(x) \text { with period } T \text {, the goal of anal- }}$
ysis is to find the coefficients a_{a} and b_{n} needed to represent this function as a sum of sines and cosines:

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{2 \pi n x}{T}\right)+b_{n} \sin \left(\frac{2 \pi n x}{T}\right)\right]
$$

We make the same simplifications as we did previously for synthesis, including working only with cosines. So, for an even periodic function $f(x)$ our goal is to determine the coefficients a_{n} in this equation:

$$
f(x)=\sum_{n=1}^{\infty} a_{n} \cos (n x)
$$

To calculate these coefficients we use the formula

$$
a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos (n x) d x \quad \text { where } n=1,2,3, \ldots
$$

For each value of n, the integral determining a_{n} can be approximated by a finite sum. Because we are working with a 20 -element nalyzer, we divide the interval $[0, \pi]$ into 20 sub-intervals, each of width $\Delta=\pi / 20$:
$a_{n} \approx \frac{2}{\pi} \sum_{k=1}^{20} f(k \Delta) \cos (n(k \Delta)) \Delta \quad$ where $n=1,2,3, \ldots, 20$

$$
a_{n} \approx \frac{2 \Delta}{\pi} \sum_{k=1}^{20} f_{k} \cos (n(k \Delta)) \quad \text { where } n=1,2,3, \ldots, 20
$$

where f_{k} denotes $f(k \Delta)$, the sampled value of the function at the k th sub-interval. We can ignore the leading factor of $2 \Delta / \pi$ because we are concerned only with relative values of a_{n}. On the machine, these values can be scaled by adjusting the magnifying lever (pg. 6). This results in

Notice that this is of the same form as the equation we use synthesize a function with the machine! That is, it is the sum of
weighted sinusoids. As the crank turns the machine produces con weighted sinusoids. As the crank turns the machine produces con-
tinuous output, but in order to determine $a_{\text {we }}$ we are interested only in integer values of n. These integer values of n appear ever two turns of the crank.

The analyzer's gears are sized such that a single full turn of the crank rotates the first gear of the cylindrical set through $1 / 80$ th of a full rotation, the second $2 / 8$ oths, the third $3 / 8$ oths, etc. This means that for two turns of the crank the first gear has rotated $\pi / 20$, the second $2(\pi / 20)$, and the third $3(\pi / 20)$. Thus, two turns of the crank sets the cosine associated with the first eara to $\cos (\pi / 20)$, the sequence of cosines used to approximate a when $n=1$.

$$
a_{1} \approx f_{1} \cos \left(\frac{\pi}{20}\right)+f_{2} \cos \left(2 \frac{\pi}{20}\right)+\ldots+f_{20} \cos \left(20 \frac{\pi}{20}\right)
$$

The other coefficients are approximated in the same way.

$$
a_{n} \approx \sum_{k=1}^{20} f_{k} \cos \left(k n \frac{\pi}{20}\right) \quad \text { where } n=1,2,3, \ldots, 20
$$

Eight Views of the Machine

Notes on the design

Nearly all of the photographs in this book were taken using a Nikon D60 dSLR with a Tokina $100 \mathrm{~mm} \mathrm{f} / 2.8$ macro lens. Included in this exception are the photos on this page which were photographed using a Canon AE-1 Program with a Vivitar $20 \mathrm{~mm} \mathrm{f} / 3.8$ lens on Velvia 100 color slide film.

The serif text in this book is set in Adobe Caslon, the sans-serif is set in Avenir, and the title is set in Archer.

This book was laid out in Adobe InDesign.

